
SIAM J. COMPUT. c© 2007 Society for Industrial and Applied Mathematics
Vol. 36, No. 5, pp. 1472–1493

QUANTUM AND CLASSICAL STRONG DIRECT PRODUCT
THEOREMS AND OPTIMAL TIME-SPACE TRADEOFFS∗

HARTMUT KLAUCK† , ROBERT ŠPALEK‡ , AND RONALD DE WOLF‡

Abstract. A strong direct product theorem says that if we want to compute k independent
instances of a function, using less than k times the resources needed for one instance, then our
overall success probability will be exponentially small in k. We establish such theorems for the
classical as well as quantum query complexity of the OR-function. This implies slightly weaker
direct product results for all total functions. We prove a similar result for quantum communication
protocols computing k instances of the disjointness function. Our direct product theorems imply a
time-space tradeoff T 2S = Ω

`
N3

´
for sorting N items on a quantum computer, which is optimal up

to polylog factors. They also give several tight time-space and communication-space tradeoffs for
the problems of Boolean matrix-vector multiplication and matrix multiplication.

Key words. complexity theory, quantum computing, lower bounds, decision trees, communica-
tion complexity

AMS subject classifications. 03D15, 68Q10, 81P68, 68Q17, 68Q05

DOI. 10.1137/05063235X

1. Introduction.

1.1. Direct product theorems. For every reasonable model of computation
one can ask the following fundamental question:

How do the resources that we need for computing k independent
instances of f scale with the resources needed for one instance and
with k?

Here the notion of “resource” needs to be specified. It could refer to time, space,
queries, or communication. Similarly we need to define what we mean by “computing
f ,” for instance, whether we allow the algorithm some probability of error and whether
this probability of error is average-case or worst-case.

In this paper we consider two kinds of resources, queries and communication,
and allow our algorithms some error probability. An algorithm is given k inputs
x1, . . . , xk and has to output the vector of k answers f(x1), . . . , f(xk). The issue is
how the algorithm can optimally distribute its resources among the k instances it
needs to compute. We focus on the relation between the total amount T of resources
available and the best-achievable success probability σ (which could be average-case or
worst-case). Intuitively, if every algorithm with t resources must have some constant
error probability when computing one instance of f , then for computing k instances
we expect a constant error on each instance and hence an exponentially small success

∗Received by the editors May 25, 2005; accepted for publication (in revised form) May 11, 2006;
published electronically February 5, 2007. A preliminary version of this paper appeared in Proceed-
ings of the 45th Annual IEEE Symposium on Foundations of Computer Science, 2004, pp. 12–21.

http://www.siam.org/journals/sicomp/36-5/63235.html
†Institut for Informatik, Goethe Universität Frankfurt, Frankfurt 60054, Germany (klauck@

thi.informatik.uni-frankfurt.de). The work of this author was supported by Canada’s NSERC and
MITACS, and by DFG grant KL 1470/1.

‡CWI, Kruislaan 413, Amsterdam 1098 SJ, The Netherlands (sr@cwi.nl, rdewolf@cwi.nl). The
work of the second author was partially supported by the European Commission under projects
RESQ, IST-2001-37559 and QAP, IST-2005-015848. The work of the third author was partially
supported by a Veni grant from the Netherlands Organization for Scientific Research (NWO), and
by the European Commission under projects RESQ, IST-2001-37559 and QAP, IST-2005-015848.

1472

DIRECT PRODUCT THEOREMS AND TIME-SPACE TRADEOFFS 1473

probability for the k-vector as a whole. Such a statement is known as a weak direct
product theorem:

If T ≈ t, then σ = 2−Ω(k).
Here “T ≈ t” informally means that T is not much smaller than t. However, even
if we give our algorithm roughly kt resources, on average it still has only t resources
available per instance. So even here we expect a constant error per instance and an
exponentially small success probability overall. Such a statement is known as a strong
direct product theorem:

If T ≈ kt, then σ = 2−Ω(k).
Strong direct product theorems (SDPTs), though intuitively very plausible, are gen-
erally hard to prove and sometimes not even true. Shaltiel [Sha01] exhibits a general
class of examples where SDPTs fail. This applies, for instance, to query complexity,
communication complexity, and circuit complexity. In his examples, success proba-
bility is taken under the uniform probability distribution on inputs. The function is
chosen such that for most inputs, most of the k instances can be computed quickly
and without any error probability. This leaves enough resources to solve the few hard
instances with high success probability. Hence for his functions, with T ≈ tk, one can
achieve average success probability close to 1.

Accordingly, we can establish direct product theorems only in special cases. Ex-
amples are the SDPT for “decision forests” by Nisan, Rudich, and Saks [NRS94], the
direct product theorem for “forests” of communication protocols by Parnafes, Raz,
and Wigderson [PRW97], and Shaltiel’s SDPT for “fair” decision trees and his discrep-
ancy bound for communication complexity [Sha01]. Shaltiel’s result for discrepancy
was recently strengthened to an SDPT for the “corruption” measure under product
distributions on the inputs by Beame et al. [BPSW05]. There also has been recent
progress on the related issue of direct sum results; see, e.g., [CSWY01, BJKS02b,
BJKS02a] and the references therein. A direct sum theorem states that computing k
instances with overall error ε requires roughly k times as many resources as comput-
ing one instance with error ε. Clearly, SDPTs always imply direct sum results, since
they state the same resource lower bounds even for algorithms whose overall error is
allowed to be exponentially close to 1, rather than at most ε.

In the quantum case, much less work has been done. Aaronson [Aar04, Theo-
rem 10] established a direct product result for the unordered search problem that
lies between the weak and the strong theorems: Every T -query quantum algorithm
for searching k marked items among N = kn input bits will have success probability
σ ≤ O

(
T 2/N

)k. In particular, if T �
√

N =
√

kn, then σ = 2−Ω(k).
Our main contributions in this paper are SDPTs for the OR-function in various

settings. First consider the case of classical randomized algorithms. Let ORn denote
the n-bit OR-function, and let f (k) denote k independent instances of a function f .
Any randomized algorithm with fewer than, say, n/2 queries will have a constant error
probability when computing ORn. Hence we expect an exponentially small success
probability when computing OR(k)

n using � kn queries. We prove the following in
section 3:

SDPT for classical query complexity. Every randomized algorithm
that computes OR(k)

n using T ≤ αkn queries has worst-case success
probability σ = 2−Ω(k) (for α > 0 a sufficiently small constant).

For simplicity we have stated this result with σ being worst-case success probability,
but the statement is also valid for the average success probability under a hard k-fold
product distribution that is implicit in our proof.

1474 HARTMUT KLAUCK, ROBERT ŠPALEK, AND RONALD DE WOLF

This statement for OR actually implies a somewhat weaker strong product theo-
rem for all total functions f , via the notion of block sensitivity bs(f). Using techniques
of Nisan and Szegedy [NS94], we can embed ORbs(f) in f (with the promise that the
weight of the OR’s input is 0 or 1), while on the other hand we know that the classical
bounded-error query complexity R2(f) is upper bounded by bs(f)3 [BBC+01]. This
implies the following:

Every randomized algorithm that computes f (k) using T ≤ αkR2(f)1/3

queries has worst-case success probability σ = 2−Ω(k) (for α > 0 a
sufficiently small constant).

This theorem falls short of being a true SDPT in having R
1/3
2 (f) instead of R2(f) in

the resource bound. However, the other two main aspects of an SDPT remain valid:
the linear dependence of the resources on k and the exponential decay of the success
probability.

Next we turn our attention to quantum algorithms. Buhrman et al. [BNRW05]
actually proved that roughly k times the resources for one instance suffices to compute
f (k) with success probability close to 1 rather than exponentially small: Q2(f (k)) =
O(kQ2(f)), where Q2(f) denotes the quantum bounded-error query complexity of f
(such a result is not known to hold in the classical world). For instance, Q2(ORn) =
Θ(
√

n) by Grover’s search algorithm; thus O(k
√

n) quantum queries suffice to compute
OR(k)

n with high success probability. In section 4 we show that if we make the number
of queries slightly smaller, the best-achievable success probability suddenly becomes
exponentially small:

SDPT for quantum query complexity. Every quantum algorithm that
computes OR(k)

n using T ≤ αk
√

n queries has worst-case success
probability σ = 2−Ω(k) (for α > 0 a sufficiently small constant).

Our proof uses the polynomial method [BBC+01] and is completely different from
the classical proof. The polynomial method was also used by Aaronson [Aar04] in his
proof of a weaker quantum direct product theorem for the search problem, mentioned
above. Our proof takes its starting point from his proof, analyzing the degree of a
single-variate polynomial that is 0 on {0, . . . , k−1}, at least σ on k, and between 0 and
1 on {0, . . . , kn}. The difference between his proof and ours is that we partially factor
this polynomial, which gives us some nice extra properties over Aaronson’s approach
of differentiating the polynomial, and that we use a strong result of Coppersmith and
Rivlin [CR92]. In both cases (different) extremal properties of Chebyshev polynomials
finish the proofs.

Again, using block sensitivity we can obtain a weaker result for all total functions:
Every quantum algorithm that computes f (k) using T ≤ αkQ2(f)1/6

queries has worst-case success probability σ = 2−Ω(k).
The third and last setting where we establish an SDPT is quantum communication
complexity. Suppose Alice has an n-bit input x and Bob has an n-bit input y. These
x and y represent sets, and DISJn(x, y) = 1 if and only if those sets are disjoint.
Note that DISJn is the negation of ORn(x ∧ y), where x ∧ y is the n-bit string
obtained by bitwise AND-ing x and y. In many ways, DISJn has the same central
role in communication complexity as ORn has in query complexity. In particular, it
is “co-NP complete” [BFS86]. The communication complexity of DISJn has been well
studied: It takes Θ(n) bits of communication in the classical world [KS92, Raz92] and
Θ(
√

n) in the quantum world [BCW98, HW02, AA03, Raz03]. For the case where
Alice and Bob want to compute k instances of disjointness, we establish the following
SDPT in section 5:

DIRECT PRODUCT THEOREMS AND TIME-SPACE TRADEOFFS 1475

SDPT for quantum communication complexity. Every quantum pro-
tocol that computes DISJ(k)

n using T ≤ αk
√

n qubits of communi-
cation has worst-case success probability σ = 2−Ω(k) (for α > 0 a
sufficiently small constant).

Our proof uses Razborov’s lower bound technique [Raz03] to translate the quantum
protocol to a polynomial, at which point the polynomial results established for the
quantum query SDPT take over. We can obtain similar results for other symmetric
predicates. The same bound was obtained independently by Beame et al. [BPSW05,
Corollary 9] for classical protocols under a specific input distribution, as a corollary
of their SDPT for corruption.1 We conjecture that the optimal result in the classical
case has a communication bound of αkn rather than αk

√
n, but cannot prove this.

One may also consider algorithms that compute the parity of the k outcomes
instead of the vector of k outcomes. This issue has been well studied, particularly
in circuit complexity, and generally goes under the name of XOR lemmas [Yao82,
GNW95]. In this paper we focus mostly on the vector version but can prove similar
strong bounds for the parity version. In particular, we state a classical strong XOR
lemma in section 3.3 and can get similar strong XOR lemmas for the quantum case
using the technique of Cleve et al. [CDNT98, section 3]. They show how the ability
to compute the parity of any subset of k bits with probability 1/2 + ε suffices to
compute the full k-vector with probability 4ε2. Hence our strong quantum direct
product theorems imply strong quantum XOR lemmas.

1.2. Time-space and communication-space tradeoffs. Apart from answer-
ing a fundamental question about the computational models of (quantum) query
complexity and communication complexity, our direct product theorems also imply a
number of new and optimal time-space tradeoffs.

First, we consider the tradeoff between the time T and space S that a quantum
circuit needs for sorting N numbers. Classically, it is well known that TS = Ω

(
N2
)

and that this tradeoff is achievable [Bea91]. In the quantum case, Klauck [Kla03] con-
structed a bounded-error quantum algorithm that runs in time T = O((N log N)3/2/√

S) for all (log N)3 ≤ S ≤ N/ log N . He also claimed a lower bound TS = Ω
(
N3/2

)
,

which would be close to optimal for small S but not for large S. Unfortunately there
is an error in the proof presented in [Kla03] (Lemma 5 appears to be wrong). Here we
use our SDPT to prove the tradeoff T 2S = Ω

(
N3
)
. This is tight up to polylogarithmic

factors.
Secondly, we consider time-space and communication-space tradeoffs for the

problems of Boolean matrix-vector product and Boolean matrix product. In the first
problem there are an N ×N matrix A and a vector b of dimension N , and the goal is
to compute the vector c = Ab, where ci = ∨N

j=1 (A[i, j] ∧ bj). In the setting of time-
space tradeoffs, the matrix A is fixed and the input is the vector b. In the problem
of matrix multiplication, two matrices have to be multiplied with the same type of
Boolean product, and both are inputs.

Time-space tradeoffs for Boolean matrix-vector multiplication have been analyzed
in an average-case scenario by Abrahamson [Abr90], whose results give a worst-case
lower bound of TS = Ω

(
N3/2

)
for classical algorithms. He conjectured that a worst-

case lower bound of TS = Ω
(
N2
)

holds. Using our classical direct product result we
are able to confirm this; i.e., there is a matrix A, such that computing Ab requires

1We proved our result in February 2004 and published it on the quant-ph preprint server in the
same month (http://www.arxiv.org/abs/quant-ph/0402123), while they proved theirs in the summer
of 2004, unaware of our paper (personal communication with Paul Beame).

1476 HARTMUT KLAUCK, ROBERT ŠPALEK, AND RONALD DE WOLF

TS = Ω
(
N2
)
. We also show a lower bound of T 2S = Ω

(
N3
)

for this problem in
the quantum case. Both bounds are tight (the second within a logarithmic factor)
if T is taken to be the number of queries to the inputs. We also get a lower bound
of T 2S = Ω

(
N5
)

for the problem of multiplying two matrices in the quantum case.
This bound is close to optimal for small S; it is open whether it is close to optimal
for large S.

Research on communication-space tradeoffs in the classical setting has been ini-
tiated by Lam, Tiwari, and Tompa [LTT92] in a restricted setting and by Beame,
Tompa, and Yan [BTY94] in a general model of space-bounded communication com-
plexity. In the setting of communication-space tradeoffs, players Alice and Bob are
modeled as space-bounded circuits, and we are interested in the communication cost
when given particular space bounds. For the problem of computing the matrix-vector
product Alice receives the matrix A (now an input) and Bob receives the vector b.
Beame, Tompa, and Yan gave tight lower bounds, e.g., for the matrix-vector product
and matrix product over GF(2), but stated the complexity of Boolean matrix-vector
multiplication as an open problem. Using our direct product result for quantum
communication complexity, we are able to show that any quantum protocol for this
problem satisfies C2S = Ω

(
N3
)
. This is tight within a polylogarithmic factor. We

also get a lower bound of C2S = Ω
(
N5
)

for computing the product of two matrices,
which again is tight.

Note that no classical lower bounds for these problems were known previously and
that finding better classical lower bounds than these remains open. The ability to
show good quantum bounds comes from the deep relation between quantum protocols
and polynomials implicit in Razborov’s lower bound technique [Raz03].

2. Preliminaries.

2.1. Quantum query algorithms. We assume familiarity with quantum com-
puting [NC00] and sketch the model of quantum query complexity, referring to [BW02]
for more details, including details on the close relation between query complexity and
degrees of multivariate polynomials. Suppose we want to compute some function f .
For input x ∈ {0, 1}N , a query gives us access to the input bits. It corresponds to the
unitary transformation

O : |i, b, z〉 7→ |i, b⊕ xi, z〉.

Here i ∈ [N] = {1, . . . , N} and b ∈ {0, 1}; the z-part corresponds to the workspace,
which is not affected by the query. We assume the input can be accessed only via
such queries. A T -query quantum algorithm has the form A = UT OUT−1 · · ·OU1OU0,
where the Uk are fixed unitary transformations, independent of x. This A depends on
x via the T applications of O. The algorithm starts in initial S-qubit state |0〉, and
its output is the result of measuring a dedicated part of the final state A|0〉. For a
Boolean function f , the output of A is obtained by observing the leftmost qubit of the
final superposition A|0〉, and its acceptance probability on input x is its probability of
outputting 1.

One of the most interesting quantum query algorithms is Grover’s search algo-
rithm [Gro96, BBHT98]. It can find an index of a 1-bit in an n-bit input in expected
number of O(

√
n/(|x|+ 1)) queries, where |x| is the Hamming weight (number of 1’s)

in the input. If we know that |x| ≤ 1, we can solve the search problem exactly using
dπ

4

√
ne queries [BHMT02].
For investigating time-space tradeoffs we use the circuit model. A circuit accesses

its input via an oracle such as a query algorithm. Time corresponds to the number

DIRECT PRODUCT THEOREMS AND TIME-SPACE TRADEOFFS 1477

of gates in the circuit. We will, however, usually consider the number of queries to
the input, which is obviously a lower bound on time. A quantum circuit uses space
S if it works with S qubits only. We require that the outputs are made at predefined
gates in the circuit, by writing their value to some extra qubits that may not be used
later on. Similar definitions are made for classical circuits.

2.2. Communicating quantum circuits. In the model of quantum commu-
nication complexity, two players Alice and Bob compute a function f on distributed
inputs x and y. The complexity measure of interest in this setting is the amount of
communication. The players follow some predefined protocol that consists of local
unitary operations and the exchange of qubits. The communication cost of a protocol
is the maximal number of qubits exchanged for any input. In the standard model of
communication complexity, Alice and Bob are computationally unbounded entities,
but we are also interested in what happens if they have bounded memory, i.e., they
work with a bounded number of qubits. To this end we model Alice and Bob as
communicating quantum circuits, following Yao [Yao93].

A pair of communicating quantum circuits is actually a single quantum circuit
partitioned into two parts. The allowed operations are local unitary operations and
access to the inputs that are given by oracles. Alice’s part of the circuit may use
oracle gates to read single bits from her input, and Bob’s part of the circuit may do
so for his input. The communication C between the two parties is simply the number
of wires carrying qubits that cross between the two parts of the circuit. A pair of
communicating quantum circuits uses space S if the whole circuit works on S qubits.

In the problems we consider, the number of outputs is much larger than the mem-
ory of the players. Therefore we use the following output convention: The player who
computes the value of an output sends this value to the other player at a predeter-
mined point in the protocol. In order to make the models as general as possible, we
furthermore allow the players to do local measurements and to throw qubits away as
well as pick up some fresh qubits. The space requirement demands only that at any
given time no more than S qubits are in use in the whole circuit.

A final comment regarding upper bounds: Buhrman, Cleve, and Wigderson
[BCW98] showed how to run a query algorithm in a distributed fashion with small
overhead in the communication. In particular, if there is a T -query quantum algo-
rithm computing N -bit function f , then there is a pair of communicating quantum
circuits with O(T log N) communication that computes f(x ∧ y) with the same suc-
cess probability. We refer to the book of Kushilevitz and Nisan [KN97] for more on
communication complexity in general and to the surveys [Kla00, Buh00, Wol02] for
more on its quantum variety.

3. Strong direct product theorem for classical queries. In this section
we prove an SDPT for classical randomized algorithms computing k independent
instances of ORn. By Yao’s principle, it is sufficient to prove it for deterministic
algorithms under a fixed hard input distribution.

3.1. Nonadaptive algorithms. We first establish an SDPT for nonadaptive
algorithms. We call an algorithm nonadaptive if, for each of the k input blocks, the
maximum number of queries in that block is fixed before the first query. Note that
this definition is nonstandard in fixing only the number of queries in each block rather
than fixing all queried indices in advance. Let Suct,µ(f) be the success probability of
the best algorithm for f under µ that queries at most t input bits.

1478 HARTMUT KLAUCK, ROBERT ŠPALEK, AND RONALD DE WOLF

Lemma 1. Let f : {0, 1}n → {0, 1}, and let µ be an input distribution. Every
nonadaptive deterministic algorithm for f (k) under µk with T ≤ kt queries has success
probability σ ≤ Suct,µ(f)k.

Proof. The proof has two steps. First, we prove by induction that nonadaptive
algorithms for f (k) under general product distribution µ1 × · · · × µk that spend ti
queries in the ith input xi have success probability ≤

∏k
i=1 Sucti,µi

(f). Second, we
argue that, when µi = µ, the value is maximal for ti = t.

Following [Sha01, Lemma 7], we prove the first part by induction on T = t1 +
· · · + tk. If T = 0, then the algorithm has to guess k independent random variables
xi ∼ µi. The probability of success is equal to the product of the individual success
probabilities, i.e.,

∏k
i=1 Suc0,µi

(f).
For the induction step T ⇒ T + 1, pick some ti 6= 0 and consider two in-

put distributions µ′i,0 and µ′i,1 obtained from µi by fixing the queried bit xi
j (the

jth bit in the ith input). By the induction hypothesis, for each value b ∈ {0, 1},
there is an optimal nonadaptive algorithm Ab that achieves the success probability
Sucti−1,µ′

i,b
(f) ·

∏
j 6=i Suctj ,µj

(f). We construct a new algorithm A that calls Ab as a
subroutine after it has queried xi

j with b as an outcome. A is optimal and has success
probability(

1∑
b=0

Prµi
[xi

j = b] · Sucti−1,µ′
i,b

(f)

)
·
∏
j 6=i

Suctj ,µj
(f) =

k∏
i=1

Sucti,µi
(f).

Since we are dealing with nonadaptive algorithms here, symmetry reasons imply
that if all k instances xi are independent and identically distributed, then the optimal
distribution of queries t1 + · · · + tk = kt is uniform, i.e., ti = t. (Note that counter-
examples to the analogous property for the general nonadaptive case, like those given
by Shaltiel [Sha01], do not apply here.) In such a case, the algorithm achieves the
success probability Suct,µ(f)k.

3.2. Adaptive algorithms. In this section we prove a similar statement also
for adaptive algorithms.

Remark. The SDPT is not always true for adaptive algorithms. Following [Sha01],
define h(x) = x1 ∨ (x2 ⊕ · · · ⊕ xn). Clearly Suc 2

3 n,µ(h) = 3/4 for µ uniform. By a
Chernoff bound, Suc 2

3 nk,µk(h(k)) = 1 − 2−Ω(k), because approximately half of the
blocks can be solved using just 1 query and the unused queries can be used to answer
exactly also the other half of the blocks.

However, the SDPT is valid for OR(k)
n under νk, where ν(0n) = 1/2 and ν(ei) =

1/2n for ei an n-bit string that contains a 1 only at the ith position. It is simple to
prove that Sucαn,ν(ORn) = α+1

2 . Nonadaptive algorithms for OR(k)
n under νk with

αkn queries thus have σ ≤ (α+1
2)k = 2− log(2

α+1)k. We can achieve any γ < 1 by
choosing α sufficiently small. We prove that adaptive algorithms cannot be much
better. Without loss of generality, we assume the following:

1. The adaptive algorithm is deterministic. By Yao’s principle [Yao77], if there
exists a randomized algorithm with success probability σ under some input
distribution, then there exists a deterministic algorithm with success proba-
bility σ under that distribution.

2. Whenever the algorithm finds a 1 in some input block, it stops querying that
block.

3. The algorithm spends the same number of queries in all blocks where it does
not find a 1. This is optimal due to the symmetry between the blocks (we

DIRECT PRODUCT THEOREMS AND TIME-SPACE TRADEOFFS 1479

omit the straightforward calculation that justifies this). It implies that the
algorithm spends at least as many queries in each “empty” input block as in
each “nonempty” block.

Lemma 2. If there is an adaptive T -query algorithm A computing OR(k)
n un-

der νk with success probability σ, then there is a nonadaptive 3T -query algorithm A′

computing OR(k)
n with success probability σ − 2−Ω(k).

Proof. Let Z be the number of empty blocks. E[Z] = k/2, and, by a Chernoff
bound, δ = Pr [Z < k/3] = 2−Ω(k). If Z ≥ k/3, then A spends at most 3T/k queries
in each empty block. Define nonadaptive A′ that spends 3T/k queries in each block.
Then A′ queries all the positions that A queries and maybe some more. Compare the
overall success probabilities of A and A′:

σA = Pr [Z < k/3] · Pr [A succeeds | Z < k/3]
+ Pr [Z ≥ k/3] · Pr [A succeeds | Z ≥ k/3]

≤ δ · 1 + Pr [Z ≥ k/3] · Pr [A′ succeeds | Z ≥ k/3]
≤ δ + σA′ .

We conclude that σA′ ≥ σA − δ. (Remark. By replacing the k/3-bound on Z by a
βk-bound for some β > 0, we can obtain arbitrary γ < 1 in the exponent δ = 2−γk,
while the number of queries of A′ becomes T/β.)

Combining the two lemmas establishes the following theorem.
Theorem 3 (SDPT for OR). For every 0 < γ < 1, there exists an α > 0

such that every randomized algorithm for OR(k)
n with T ≤ αkn queries has success

probability σ ≤ 2−γk.

3.3. A bound for the parity instead of the vector of results. Here we
give an SDPT for the parity of k independent instances of ORn. The parity is a
Boolean variable; hence we can always guess it with probability at least 1

2 . However,
we prove that the advantage (instead of the success probability) of our guess must be
exponentially small.

Let X be a random bit with Pr [X = 1] = p. We define the advantage of X by
Adv(X) = |2p − 1|. Note that a uniformly distributed random bit has advantage 0
and a bit known with certainty has advantage 1. It is well known that if X1, . . . , Xk

are independent random bits, then Adv(X1 ⊕ · · · ⊕ Xk) =
∏k

i=1 Adv(Xi). Com-
pare this with the fact that the probability of correctly guessing the complete vector
(X1, . . . , Xk) is the product of the individual probabilities.

We have proved a lower bound for the computation of OR(k)
n (vector of ORs). By

the same technique, replacing the success probability by the advantage in all claims
and proofs, we can also prove a lower bound for the computation of OR⊕k

n (parity of
ORs).

Theorem 4 (SDPT for parity of ORs). For every 0 < γ < 1, there exists an
α > 0 such that every randomized algorithm for OR⊕k

n with T ≤ αkn queries has
advantage τ ≤ 2−γk.

3.4. A bound for all functions. Here we show that the SDPT for OR actually
implies a weaker direct product theorem for all functions. In this weaker version, the
success probability of computing k instances still goes down exponentially with k, but
we need to start from a polynomially smaller bound on the overall number of queries.

Definition 5. For x ∈ {0, 1}n and S ⊆ [n], we use xS to denote the n-bit
string obtained from x by flipping the bits in S. Consider a (possibly partial) function

1480 HARTMUT KLAUCK, ROBERT ŠPALEK, AND RONALD DE WOLF

f : D → Z, with D ⊆ {0, 1}n. The block sensitivity bsx(f) of x ∈ D is the maximal
b for which there are disjoint sets S1, . . . , Sb such that f(x) 6= f(xSi). The block
sensitivity of f is maxx∈D bsx(f).

Block sensitivity is closely related to deterministic and bounded-error classical
query complexity as shown in the following theorem.

Theorem 6 (see [Nis91, BBC+01]). R2(f) = Ω(bs(f)) for all f , and D(f) ≤
bs(f)3 for all total Boolean f .

Nisan and Szegedy [NS94] showed how to embed a bs(f)-bit OR-function (with
the promise that the input has weight ≤ 1) into f . Combined with our SDPT for OR,
this implies the following direct product theorem for all functions in terms of their
block sensitivity.

Theorem 7. For every 0 < γ < 1, there exists an α > 0 such that for every
f , every classical algorithm for f (k) with T ≤ αkbs(f) queries has success probability
σ ≤ 2−γk.

This is optimal whenever R2(f) = Θ(bs(f)), which is the case for most functions.
For total functions, the gap between R2(f) and bs(f) is not more than cubic; hence,
we have the following corollary.

Corollary 8. For every 0 < γ < 1, there exists an α > 0 such that for every
total Boolean f , every classical algorithm for f (k) with T ≤ αkR2(f)1/3 queries has
success probability σ ≤ 2−γk.

4. Strong direct product theorem for quantum queries. In this section
we prove an SDPT for quantum algorithms computing k independent instances of
OR. Our proof relies on the polynomial method of [BBC+01].

4.1. Bounds on polynomials. We use three results about polynomials, also
used in [BCWZ99]. The first is by Coppersmith and Rivlin [CR92, p. 980] and gives
a general bound for polynomials bounded by 1 at integer points.

Theorem 9 (see Coppersmith and Rivlin [CR92]). Every polynomial p of degree
d ≤ n that has absolute value

|p(i)| ≤ 1 for all integers i ∈ [0, n]

satisfies

|p(x)| < aebd2/n for all real x ∈ [0, n],

where a, b > 0 are universal constants (no explicit values for a and b are given
in [CR92]).

The other two results concern the Chebyshev polynomials Td, defined by (see,
e.g., [Riv90]):

Td(x) =
1
2

((
x +

√
x2 − 1

)d

+
(
x−

√
x2 − 1

)d
)

.

Td has degree d, and its absolute value |Td(x)| is bounded by 1 if x ∈ [−1, 1]. On the
interval [1,∞), Td exceeds all other polynomials with those two properties ([Riv90,
p. 108] and [Pat92, Fact 2]).

Theorem 10. If q is a polynomial of degree d such that |q(x)| ≤ 1 for all
x ∈ [−1, 1] then |q(x)| ≤ |Td(x)| for all x ≥ 1.

Paturi [Pat92, before Fact 2] proved the following lemma.
Lemma 11 (see Paturi [Pat92]). Td(1 + µ) ≤ e2d

√
2µ+µ2 for all µ ≥ 0.

DIRECT PRODUCT THEOREMS AND TIME-SPACE TRADEOFFS 1481

Proof. For x = 1 + µ, Td(x) ≤ (x +
√

x2 − 1)d = (1 + µ +
√

2µ + µ2)d ≤
(1 + 2

√
2µ + µ2)d ≤ e2d

√
2µ+µ2

(using that 1 + z ≤ ez for all real z).
The following key lemma is the basis for all our direct product theorems.
Lemma 12. Suppose p is a degree-D polynomial such that for some δ ≥ 0

−δ ≤ p(i) ≤ δ for all i ∈ {0, . . . , k − 1},
p(k) = σ,
p(i) ∈ [−δ, 1 + δ] for all i ∈ {0, . . . , N}.

Then for every integer 1 ≤ C < N − k and µ = 2C/(N − k − C) we have

σ ≤ a

(
1 + δ +

δ(2N)k

(k − 1)!

)
· exp

(
b(D − k)2

(N − k − C)
+ 2(D − k)

√
2µ + µ2 − k ln(C/k)

)
+ δk2k−1,

where a, b are the constants given by Theorem 9.
Before establishing this gruesome bound, let us reassure the reader by noting

that we will apply this lemma with δ either 0 or negligibly small, D = α
√

kN for
sufficiently small α, and C = keγ+1, giving

σ ≤ exp
(
(bα2 + 4αeγ/2+1/2 − 1− γ)k

)
≤ e−γk ≤ 2−γk.

Proof of Lemma 12. Divide p with remainder by
∏k−1

j=0 (x− j) to obtain

p(x) = q(x)
k−1∏
j=0

(x− j) + r(x),

where d = deg(q) = D − k and deg(r) ≤ k − 1. We know that r(x) = p(x) ∈ [−δ, δ]
for all x ∈ {0, . . . , k − 1}. Decompose r as a linear combination of polynomials ei,
where ei(i) = 1 and ei(x) = 0 for x ∈ {0, . . . , k − 1} − {i}:

r(x) =
k−1∑
i=0

p(i)ei(x) =
k−1∑
i=0

p(i)
k−1∏
j=0
j 6=i

x− j

i− j
.

We bound the values of r for all real x ∈ [0, N] by

|r(x)| ≤
k−1∑
i=0

|p(i)|
i!(k − 1− i)!

k−1∏
j=0
j 6=i

|x− j|

≤ δ

(k − 1)!

k−1∑
i=0

(
k − 1

i

)
Nk ≤ δ(2N)k

(k − 1)!
,

|r(k)| ≤ δk2k−1.

This implies the following about the values of the polynomial q:

|q(k)| ≥ (σ − δk2k−1)/k!

|q(i)| ≤ (i− k)!
i!

(
1 + δ +

δ(2N)k

(k − 1)!

)
for i ∈ {k, . . . , N}.

1482 HARTMUT KLAUCK, ROBERT ŠPALEK, AND RONALD DE WOLF

In particular,

|q(i)| ≤ C−k

(
1 + δ +

δ(2N)k

(k − 1)!

)
= A for i ∈ {k + C, . . . , N}.

Theorem 9 implies that there are constants a, b > 0 such that

|q(x)| ≤ A · aebd2/(N−k−C) = B for all real x ∈ [k + C,N].

We now divide q by B to normalize it and rescale the interval [k + C,N] to [1,−1] to
get a degree-d polynomial t satisfying

|t(x)| ≤ 1 for all x ∈ [−1, 1],

t(1 + µ) = q(k)/B for µ = 2C/(N − k − C).

Since t cannot grow faster than the degree-d Chebyshev polynomial, we get

t(1 + µ) ≤ Td(1 + µ) ≤ e2d
√

2µ+µ2
.

Combining our upper and lower bounds on t(1 + µ), we obtain

(σ − δk2k−1)/k!
C−k (1 + δ + (δ(2N)k/(k − 1)!))aebd2/(N−k−C)

≤ e2d
√

2µ+µ2
.

Rearranging gives the bound.

4.2. Consequences for quantum algorithms. The previous result about
polynomials implies a strong tradeoff between queries and success probability for
quantum algorithms that have to find k 1’s in an N -bit input. A k-threshold algo-
rithm with success probability σ is an algorithm on N -bit input x that outputs 0 with
certainty if |x| < k, and outputs 1 with probability at least σ if |x| = k.

Theorem 13. For every γ > 0, there exists an α > 0 such that every quantum
k-threshold algorithm with T ≤ α

√
kN queries has success probability σ ≤ 2−γk.

Proof. Fix γ > 0 and consider a T -query k-threshold algorithm. By [BBC+01],
its acceptance probability is an N -variate polynomial of degree D ≤ 2T ≤ 2α

√
kN

and can be symmetrized to a single-variate polynomial p with the properties
p(i) = 0 if i ∈ {0, . . . , k − 1},
p(k) ≥ σ,
p(i) ∈ [0, 1] for all i ∈ {0, . . . , N},

Choosing α > 0 sufficiently small and δ = 0, the result follows from Lemma 12.
This implies an SDPT for k instances of the n-bit search problem. For each such

instance, the goal is to find the index of a 1-bit among the n input bits of the instance
(or to report that none exists).

Theorem 14 (SQDPT for Search). For every γ > 0, there exists an α > 0
such that every quantum algorithm for Search(k)

n with T ≤ αk
√

n queries has success
probability σ ≤ 2−γk.

Proof. Set N = kn, and fix a γ > 0 and a T -query algorithm A for Search(k)
n with

success probability σ. Now consider the following algorithm that acts on an N -bit
input x:

1. Apply a random permutation π to x.
2. Run A on π(x).

DIRECT PRODUCT THEOREMS AND TIME-SPACE TRADEOFFS 1483

3. Query each of the k positions that A outputs, and return 1 if and only if at
least k/2 of those bits are 1.

This uses T + k queries. We will show that it is a k/2-threshold algorithm. First, if
|x| < k/2, it always outputs 0. Second, consider the case |x| = k/2. The probability
that π puts all k/2 1’s in distinct n-bit blocks is

N

N
· N − n

N − 1
· · ·

N − k
2n

N − k
2

≥

(
N − k

2n

N

)k/2

= 2−k/2.

Hence our algorithm outputs 1 with probability at least σ2−k/2. Choosing α suffi-
ciently small, the previous theorem implies σ2−k/2 ≤ 2−(γ+1/2)k; hence σ ≤ 2−γk.

Our bounds are quite precise for α � 1. We can choose γ = 2 ln(1/α) − O(1)
and ignore some lower-order terms to get roughly σ ≤ α2k. On the other hand, it is
known that Grover’s search algorithm with α

√
n queries on an n-bit input has success

probability roughly α2 [BBHT98]. Doing such a search on all k instances gives overall
success probability α2k.

Theorem 15 (SQDPT for OR). There exist α, γ > 0 such that every quantum
algorithm for OR(k)

n with T ≤ αk
√

n queries has success probability σ ≤ 2−γk.
Proof. An algorithm A for OR(k)

n with success probability σ can be used to build
an algorithm A′ for Search(k)

n with slightly worse success probability:
1. Run A on the original input and remember which blocks contain a 1.
2. Run simultaneously (at most k) binary searches on the nonzero blocks. Iterate

this s = 2 log(1/α) times. Each iteration is computed by running A on the
parts of the blocks that are known to contain a 1, halving the remaining
instance size each time.

3. Run the exact version of Grover’s algorithm on each of the remaining parts
of the instances to look for a 1 there (each remaining part has size n/2s).

This new algorithm A′ uses (s + 1)T + π
4 k
√

n/2s = O(α log(1/α)k
√

n) queries. With
probability at least σs+1, A succeeds in all iterations, in which case A′ solves Search(k)

n .
By the previous theorem, for every γ′ > 0 of our choice we can choose α > 0 such
that

σs+1 ≤ 2−γ′k,

which implies the theorem with γ = γ′/(s + 1).
Choosing our parameters carefully, we can actually show that for every γ < 1

there is an α > 0 such that αk
√

n queries give success probability σ ≤ 2−γk. Clearly,
σ = 2−k is achievable without any queries by random guessing.

4.3. A bound for all functions. As in section 3.4, we can extend the SDPT
for OR to a slightly weaker theorem for all total functions. Block sensitivity is closely
related to bounded-error quantum query complexity as shown in the following theo-
rem.

Theorem 16 (see [BBC+01]). Q2(f) = Ω(
√

bs(f)) for all f , and D(f) ≤ bs(f)3

for all total Boolean f .
By embedding an OR of size bs(f) in f , we obtain the following theorem.
Theorem 17. There exist α, γ > 0 such that for every f , every quantum algo-

rithm for f (k) with T ≤ αk
√

bs(f) queries has success probability σ ≤ 2−γk.
This is close to optimal whenever Q2(f) = Θ(

√
bs(f)). For total functions, the

gap between Q2(f) and
√

bs(f) is no more than a 6th power; hence the following
corollary holds.

1484 HARTMUT KLAUCK, ROBERT ŠPALEK, AND RONALD DE WOLF

Corollary 18. There exist α, γ > 0 such that for every total Boolean f , every
quantum algorithm for f (k) with T ≤ αkQ2(f)1/6 queries has success probability σ ≤
2−γk.

5. Strong direct product theorem for quantum communication. In this
section we establish an SDPT for quantum communication complexity, specifically
for protocols that compute k independent instances of the disjointness problem. Our
proof relies crucially on the beautiful technique that Razborov introduced to estab-
lish a lower bound on the quantum communication complexity of (one instance of)
disjointness [Raz03]. It allows us to translate a quantum communication protocol to a
single-variate polynomial that represents, roughly speaking, the protocol’s acceptance
probability as a function of the size of the intersection of x and y. Once we have this
polynomial, the results from section 4.1 suffice to establish an SDPT.

5.1. Razborov’s technique. Razborov’s technique relies on the following linear
algebraic notions. The operator norm ‖ A ‖ of a matrix A is its largest singular
value σ1. The trace inner product (also known as Hilbert–Schmidt inner product)
between A and B is 〈A,B〉 = Tr(A∗B). The trace norm is ‖ A ‖tr = max{|〈A,B〉| :
‖ B ‖ = 1} =

∑
i σi, the sum of all singular values of A. The Frobenius norm is

‖ A ‖F =
√∑

ij |Aij |2 =
√∑

i σ2
i . The following lemma is implicit in Razborov’s

paper.
Lemma 19. Consider a Q-qubit quantum communication protocol on N -bit inputs

x and y, with acceptance probabilities denoted by P (x, y). Define

P (i) = E|x|=|y|=N/4,|x∧y|=i|[P (x, y)],

where the expectation is taken uniformly over all x, y that each have weight N/4 and
that have intersection i. For every d ≤ N/4 there exists a degree-d polynomial q such
that |P (i)− q(i)| ≤ 2−d/4+2Q for all i ∈ {0, . . . , N/8}.

Proof. We only consider the N =
(

N
N/4

)
strings of weight N/4. Let P denote the

N × N matrix of the acceptance probabilities on these inputs. We know from Yao
and Kremer [Yao93, Kre95] that we can decompose P as a matrix product P = AB,
where A is an N × 22Q−2 matrix with each entry at most 1 in absolute value, and
similarly for B. Note that ‖ A ‖F , ‖ B ‖F ≤

√
N22Q−2. Using Hölder’s inequality we

have

‖ P ‖tr ≤ ‖ A ‖F · ‖ B ‖F ≤ N22Q−2.

Let µi denote the N × N matrix corresponding to the uniform probability distri-
bution on {(x, y) : |x ∧ y| = i}. These “combinatorial matrices” have been well
studied [Knu03]. Note that 〈P, µi〉 is the expected acceptance probability P (i) of the
protocol under that distribution. One can show that the different µi commute; thus
they have the same eigenspaces E0, . . . , EN/4 and can be simultaneously diagonalized
by some orthogonal matrix U . For t ∈ {0, . . . , N/4}, let (UPUT)t denote the block
of UPUT corresponding to Et, and let at = Tr((UPUT)t) be its trace. Then we have

N/4∑
t=0

|at| ≤
N∑

j=1

∣∣(UPUT)jj

∣∣ ≤ ‖ UPUT ‖tr = ‖ P ‖tr ≤ N22Q−2,

where the second inequality is a property of the trace norm.
Let λit be the eigenvalue of µi in eigenspace Et. It is known [Raz03, sec-

tion 5.3] that λit is a degree-t polynomial in i, and that |λit| ≤ 2−t/4/N for i ≤ N/8

DIRECT PRODUCT THEOREMS AND TIME-SPACE TRADEOFFS 1485

(the factor 1/4 in the exponent is implicit in Razborov’s paper). Consider the high-
degree polynomial p defined by

p(i) =
N/4∑
t=0

atλit.

This satisfies

p(i) =
N/4∑
t=0

Tr((UPUT)t)λit = 〈UPUT , UµiU
T 〉 = 〈P, µi〉 = P (i).

Let q be the degree-d polynomial obtained by removing the high-degree parts of p:

q(i) =
d∑

t=0

atλit.

Then P and q are close on all integers i between 0 and N/8:

|P (i)− q(i)| = |p(i)− q(i)| =

∣∣∣∣∣∣
N/4∑

t=d+1

atλit

∣∣∣∣∣∣ ≤ 2−d/4

N

N/4∑
t=0

|at| ≤ 2−d/4+2Q.

5.2. Consequences for quantum protocols. Combining Razborov’s tech-
nique with our polynomial bounds, we can prove the following theorem.

Theorem 20 (SQDPT for disjointness). There exist α, γ > 0 such that every
quantum protocol for DISJ(k)

n with Q ≤ αk
√

n qubits of communication has success
probability p ≤ 2−γk.

Proof sketch. By doing the same trick with s = 2 log(1/α) rounds of binary search
as for Theorem 15, we can tweak a protocol for DISJ(k)

n to a protocol that satisfies,
with P (i) defined as in Lemma 19, N = kn and σ = ps+1:

P (i) = 0 if i ∈ {0, . . . , k − 1},
P (k) ≥ σ,
P (i) ∈ [0, 1] for all i ∈ {0, . . . , N}

(a subtlety: instead of exact Grover we use an exact version of the O(
√

n)-qubit
disjointness protocol of [AA03]; the [BCW98]-protocol would lose a log n-factor).
Lemma 19, using d = 12Q, then gives a degree-d polynomial q that differs from
P by at most δ ≤ 2−Q on all i ∈ {0, . . . , N/8}. This δ is sufficiently small to apply
Lemma 12, which in turn upper bounds σ and hence p.

This technique also gives SDPTs for symmetric predicates other than DISJn. As
mentioned in the introduction, the same bound was obtained independently by Beame
et al. [BPSW05, Corollary 9] for classical protocols.

6. Time-space tradeoff for quantum sorting. We will now use our SDPT to
get near-optimal time-space tradeoffs for quantum circuits for sorting. In our model,
the numbers a1, . . . , aN that we want to sort can be accessed by means of queries, and
the number of queries lower bounds the actual time taken by the circuit. The circuit
has N output gates and in the course of its computation outputs the N numbers in
sorted (say, descending) order, with success probability at least 2/3.

Theorem 21. Every bounded-error quantum circuit for sorting N numbers that
uses T queries and S qubits of workspace satisfies T 2S = Ω

(
N3
)
.

1486 HARTMUT KLAUCK, ROBERT ŠPALEK, AND RONALD DE WOLF

Proof. We “slice” the circuit along the time-axis into L = T/α
√

SN slices, each
containing T/L = α

√
SN queries. Each such slice has a number of output gates.

Consider any slice. Suppose it contains output gates i, i+1, . . . , i+k−1 for i ≤ N/2,
so that it is supposed to output the ith up to (i+k−1)th largest elements of its input.
We want to show that k = O(S). If k ≤ S, then we are done, so assume k > S. We
can use the slice as a k-threshold algorithm on N/2 bits, as follows. For an N/2-bit
input x, construct a sorting input by taking i − 1 copies of the number 2, the N/2
bits in x, and N/2− i + 1 copies of the number 0, and append their position behind
the numbers.

Consider the behavior of the sorting circuit on this input. The first part of the
circuit has to output the i− 1 largest numbers, which all start with 2. We condition
on the event that the circuit succeeds in this. It then passes on an S-qubit state
(possibly mixed) as the starting state of the particular slice we are considering. This
slice then outputs the k largest numbers in x with probability at least 2/3. Now,
consider an algorithm that runs just this slice, starting with the completely mixed
state on S-qubits, and that outputs 1 if it finds k numbers starting with 1, and
outputs 0 otherwise. If |x| < k, this new algorithm always outputs 0 (note that it
can verify finding a 1 since its position is appended), but if |x| = k, then it outputs
1 with probability at least σ ≥ 2

3 · 2−S , because the completely mixed state has
“overlap” 2−S with the “good” S-qubit state that would have been the starting state
of the slice in the run of the sorting circuit. On the other hand, the slice has only
α
√

SN < α
√

kN queries, so by choosing α sufficiently small, Theorem 13 implies
σ ≤ 2−Ω(k). Combining our upper and lower bounds on σ gives k = O(S). Thus we
need L = Ω(N/S) slices, so T = Lα

√
SN = Ω(N3/2/

√
S).

As mentioned, our tradeoff is achievable up to polylog factors [Kla03]. Interest-
ingly, the near-optimal algorithm uses only a polylogarithmic number of qubits and
otherwise just classical memory. For simplicity we have shown the lower bound for
the case when the outputs have to be made in their natural ordering only, but we can
show, using a slightly different proof, the same lower bound for any ordering of the
outputs that does not depend on the input.

7. Time-space tradeoffs for Boolean matrix products. First we show a
lower bound on the time-space tradeoff for Boolean matrix-vector multiplication on
classical machines.

Theorem 22. There is an N × N matrix A such that every classical bounded-
error circuit that computes the Boolean matrix-vector product Ab with T queries and
space S = o(N/ log N) satisfies TS = Ω

(
N2
)
.

The bound is tight if T measures queries to the input.
Proof. Fix k = O(S) large enough. First we have to find a hard matrix A. We

pick A randomly by setting N/(2k) random positions in each row to 1. We want to
show that with positive probability for all sets of k rows A[i1], . . . , A[ik] many of the
rows A[ij] contain at least N/(6k) 1’s that are not 1’s in any of the k− 1 other rows.

This probability can be bounded as follows. We will treat the rows as subsets of
{1, . . . , N}. A row A[j] is called bad with respect to k−1 other rows A[i1], . . . , A[ik−1]
if |A[j] − ∪`A[i`]| ≤ N/(6k). For fixed i1, . . . , ik−1, the probability that some A[j]
is bad with respect to the k − 1 other rows is at most e−Ω(N/k) by the Chernoff
bound and the fact that k rows can together contain at most N/2 elements. Since
k = o(N/ log N) we may assume this probability is at most 1/N10.

Now fix any set I = {i1, . . . , ik}. The probability that for j ∈ I it holds that
A[j] is bad with respect to the other rows is at most 1/N10, and this also holds if we

DIRECT PRODUCT THEOREMS AND TIME-SPACE TRADEOFFS 1487

condition on the event that some other rows are bad, since this condition makes it
only less probable that another row is also bad. So for any fixed J ⊂ I of size k/2
the probability that all rows in J are bad is at most N−5k, and the probability that
there exists such J is at most (

k

k/2

)
N−5k.

Furthermore, the probability that there is a set I of k rows for which k/2 are bad is
at most (

N

k

)(
k

k/2

)
N−5k < 1.

So there is an A as required and we may fix such an A.
Now suppose we are given a circuit with space S that computes the Boolean

product between the rows of A and b in some order. We again proceed by “slicing”
the circuit into L = T/αN slices, each containing T/L = αN queries. Each such slice
has a number of output gates. Consider any slice. Suppose it contains output gates
i1 < · · · < ik ≤ N/2; thus it is supposed to output ∨N

`=1 (A[ij , `] ∧ b`) for all ij with
1 ≤ j ≤ k.

Such a slice starts on a classical value of the “memory” of the circuit, which
is in general a probability distribution on S bits (if the circuit is randomized). We
replace this probability distribution by the uniform distribution on the possible values
of S bits. If the original circuit succeeds in computing the function correctly with
probability at least 1/2, then so does the circuit slice with its outputs, and replacing
the initial value of the memory by a uniformly random value decreases the success
probability to no less than (1/2) · 1/2S .

If we now show that any classical circuit with αN queries that produces the
outputs i1, . . . , ik can succeed only with exponentially small probability in k, we get
that k = O(S), and hence (T/αN) ·O(S) ≥ N , which gives the claimed lower bound
for the time-space tradeoff.

Each set of k outputs corresponds to k rows of A, which contain N/(2k) 1’s each.
Thanks to the construction of A, there are k/2 rows among these, such that N/(6k)
of the 1’s in each such row are in a position where none of the other contains a 1.
So we get k/2 sets of N/(6k) positions that are unique to each of the k/2 rows.
The inputs for b will be restricted to contain 1’s only at these positions, and so the
algorithm naturally has to solve k/2 independent OR problems on n = N/(6k) bits
each. By Theorem 3, this is only possible with αN queries if the success probability
is exponentially small in k.

An absolutely analogous construction can be done in the quantum case. Using
circuit slices of length α

√
NS, we can prove the following theorem.

Theorem 23. There is an N × N matrix A such that every quantum bounded-
error circuit that computes the Boolean matrix-vector product Ab with T queries and
space S = o(N/ log N) satisfies T 2S = Ω

(
N3
)
.

Note that this is tight within a logarithmic factor (needed to improve the success
probability of Grover’s search).

Theorem 24. Every classical bounded-error circuit that computes the N × N
Boolean matrix product AB with T queries and space S satisfies TS = Ω

(
N3
)
.

While this is near-optimal for small S, it is probably not tight for large S, a
likely tight tradeoff being T 2S = Ω

(
N6
)
. It is also no improvement compared to

Abrahamson’s average-case bounds [Abr90].

1488 HARTMUT KLAUCK, ROBERT ŠPALEK, AND RONALD DE WOLF

Proof. Suppose that S = o(N); otherwise the bound is trivial, since time N2 is
always needed. We can proceed in a manner similar to that of the proof of Theorem 22.
We slice the circuit so that each slice has only αN queries. Suppose a slice makes
k outputs. We are going to restrict the inputs to get a direct product problem with
k instances of size N/k each; hence a slice with αN queries has exponentially small
success probability in k and thus can produce only O(S) outputs. Since the overall
number of outputs is N2, we get the tradeoff TS = Ω

(
N3
)
.

Suppose a circuit slice makes k outputs, where an output labeled (i, j) needs to
produce the vector product of the ith row A[i] of A and the jth column B[j] of B.
We may partition the set {1, . . . , N} into k mutually disjoint subsets U(i, j) of size
N/k, each associated to an output (i, j).

Assume that there are ` outputs (i, j1), . . . , (i, j`) involving A[i]. Each such output
is associated to a subset U(i, jt), and we set A[i] to zero on all positions that are not
in any of these subsets, and to 1 on all positions that are in one of these subsets.
When there are ` outputs (i1, j), . . . , (i`, j) involving B[j], we set B[j] to zero on all
positions that are not in any of the corresponding subsets, and allow the inputs to be
arbitrary on the other positions.

If the circuit computes on these restricted inputs, it actually has to compute k
instances of OR of size n = N/k in B, for it is true that A[i] and B[j] contain a single
block of size N/k in which A[i] contains only 1’s, and B[j] “free” input bits, if and
only if (i, j) is one of the k outputs. Hence the SDPT is applicable.

The application to the quantum case is analogous.
Theorem 25. Every quantum bounded-error circuit that computes the N × N

Boolean matrix product AB with T queries and space S satisfies T 2S = Ω
(
N5
)
.

If S = O(log N), then N2 applications of Grover can compute AB with T =
O
(
N2.5 log N

)
. Hence our tradeoff is near-optimal for small S. We do not know

whether it is optimal for large S.

8. Quantum communication-space tradeoffs for matrix products. In
this section we use the strong direct product result for quantum communication (The-
orem 20) to prove communication-space tradeoffs. We later show that these are close
to optimal.

Theorem 26. Every quantum bounded-error protocol in which Alice and Bob
have bounded space S and that computes the N -dimensional Boolean matrix-vector
product satisfies C2S = Ω

(
N3
)
.

Proof. In a protocol, Alice receives a matrix A, and Bob receives a vector b as
inputs. Given a circuit that multiplies these with communication C and space S, we
again proceed to slice it. This time, however, a slice contains a limited amount of
communication. Recall that in communicating quantum circuits the communication
corresponds to wires carrying qubits that cross between Alice’s and Bob’s circuits.
Hence we may cut the circuit after α

√
NS qubits have been communicated and so

on. Overall there are C/α
√

NS circuit slices. Each starts with an initial state that
may be replaced by the completely mixed state at the cost of decreasing the success
probability to (1/2)·1/2S . We want to employ the direct product theorem for quantum
communication complexity to show that a protocol with the given communication has
success probability at most exponentially small in the number of outputs it produces
and thus that a slice can produce at most O(S) outputs. Combining these bounds
with the fact that N outputs have to be produced gives the tradeoff.

To use the direct product theorem we restrict the inputs in the following way:
Suppose a protocol makes k outputs. We partition the vector b into k blocks of size

DIRECT PRODUCT THEOREMS AND TIME-SPACE TRADEOFFS 1489

N/k, and each block is assigned to one of the k rows of A for which an output is
made. This row is made to contain zeros outside of the positions belonging to its
block, and hence we arrive at a problem where disjointness has to be computed on k
instances of size N/k. With communication α

√
kN , the success probability must be

exponentially small in k due to Theorem 20. Hence k = O(S) is an upper bound on
the number of outputs produced.

Theorem 27. Every quantum bounded-error protocol in which Alice and Bob
have bounded space S and that computes the N -dimensional Boolean matrix product
satisfies C2S = Ω

(
N5
)
.

Proof. The proof uses the same slicing approach as in the other tradeoff results.
Note that we can assume that S = o(N), since otherwise the bound is trivial. Each
slice contains communication α

√
NS, and as before a direct product result showing

that k outputs can be computed only with success probability exponentially small
in k leads to the conclusion that a slice can compute only O(S) outputs. Therefore
(C/α

√
NS) ·O(S) ≥ N2, and we are done.

Consider a protocol with α
√

NS qubits of communication. We partition the
universe {1, . . . , N} of the disjointness problems to be computed into k mutually
disjoint subsets U(i, j) of size N/k, each associated to an output (i, j), which in turn
corresponds to a row/column pair A[i], B[j] in the input matrices A and B. Assume
that there are ` outputs (i, j1), . . . , (i, j`) involving A[i]. Each output is associated to
a subset of the universe U(i, jt), and we set A[i] to zero on all positions that are not
in one of these subsets. Then we proceed analogously with the columns of B.

If the protocol computes on these restricted inputs, it has to solve k instances of
disjointness of size n = N/k each, since A[i] and B[j] contain a single block of size
N/k in which both are not set to 0 if and only if (i, j) is one of the k outputs. Hence
Theorem 20 is applicable.

We now want to show that these tradeoffs are not too far from optimal.
Theorem 28. There is a quantum bounded-error protocol with space S that

computes the Boolean product between an N×N matrix and an N -dimensional vector
within communication C = O((N3/2 log2 N)/

√
S).

There is a quantum bounded-error protocol with space S that computes the Boolean
product between two N×N matrices within communication C = O((N5/2 log2 N)/

√
S).

Proof. We begin by showing a protocol for the following scenario: Alice gets S
N -bit vectors x1, . . . , xS , Bob gets an N -bit vector y, and they want to compute the
S Boolean inner products between these vectors. The protocol uses space O(S).

In the following, we interpret Boolean vectors as sets. The main idea is that
Alice can use the union z of the xi and then Alice and Bob can find an element in
the intersection of z and y using the protocol for the disjointness problem described
in [BCW98]. Alice then marks all xi that contain this element and removes them
from z.

A problem with this approach is that Alice cannot store z explicitly, since it might
contain many more than S elements. Alice may, however, store in an array of length
S the indices of those sets xi for which an element in the intersection of xi and y has
already been found. This array and the input given as an oracle work as an implicit
representation of z.

Now suppose at some point during the protocol that the intersection of z and
y has size k. Then Alice and Bob can find one element in this intersection within
O(
√

N/k) rounds of communication, in each of which O(log N) qubits are exchanged.
Furthermore, in O(

√
Nk) rounds all elements in the intersection can be found. So if

1490 HARTMUT KLAUCK, ROBERT ŠPALEK, AND RONALD DE WOLF

k ≤ S, then all elements are found within communication O(
√

NS log N), and the
problem can be solved completely. On the other hand, if k ≥ S, finding one element
costs O(

√
N/S log N), but finding such an element removes at least one xi from z,

and hence this has to be done at most S times, giving the same overall communication
bound.

It is not hard to see that this process can be implemented with space O(S).
The protocol from [BCW98] is a distributed Grover’s search that uses only space
O(log N). Bob can work as in this protocol. For each search, Alice has to start with
a superposition over all indices in z. This superposition can be computed from her
oracle and her array. In each step she has to apply the Grover iteration. This can
also be implemented from these two resources.

To get a protocol for the matrix-vector product, the above procedure is repeated
N/S times; hence the communication is O((N/S) ·

√
NS log2 N), where one logarith-

mic factor stems from improving success probability to 1/poly(N).
For the product of two matrices, the matrix-vector protocol may be repeated N

times.
These near-optimal protocols use only O(log N) qubits, and apart from that S

bits of classical memory.

9. Open problems. We mention some open problems. The first is to determine
tight time-space tradeoffs for the Boolean matrix product on both classical and quan-
tum computers. Second, regarding communication-space tradeoffs for the Boolean
matrix-vector and matrix product, we did not prove any classical bounds that were
better than our quantum bounds. Klauck [Kla04] recently proved classical tradeoffs
CS2 = Ω

(
N3
)

and CS2 = Ω
(
N2
)

for the Boolean matrix product and matrix-vector
product, respectively, by means of a weak direct product theorem for disjointness. A
classical strong direct product theorem for disjointness (with communication bound
αkn instead of our current αk

√
n) would imply optimal tradeoffs, but we do not

know how to prove this at the moment. Third, we would like to know whether an
SDPT holds in the query and communication setting for all Boolean functions if we
consider worst-case error probability (Shaltiel [Sha01] disproved this for average-case
error probability). Finally, it would be interesting to get any lower bounds on time-
space or communication-space tradeoffs for decision problems in the quantum case,
for example, for element distinctness [BDH+01, Amb04] or the verification of matrix
multiplication [BŠ06].

Acknowledgments. Many thanks to Scott Aaronson for email discussions about
the evolving results in his work [Aar04] that motivated some of our proofs, Harry
Buhrman for useful discussions, Paul Beame for communication about [BPSW05],
and the anonymous referees for comments that improved the presentation of the
paper.

REFERENCES

[AA03] S. Aaronson and A. Ambainis, Quantum search of spatial regions, in Proceed-
ings of the 44th Annual IEEE Symposium on Foundations of Computer Science,
2003, pp. 200–209; available online from http://www.arxiv.org/abs/quant-ph/
0303041.

[Aar04] S. Aaronson, Limitations of quantum advice and one-way communication, in Proceed-
ings of the 19th Annual IEEE Conference on Computational Complexity, 2004, pp.
320–332; available online from http://www.arxiv.org/abs/quant-ph/0402095.

DIRECT PRODUCT THEOREMS AND TIME-SPACE TRADEOFFS 1491

[Abr90] K. Abrahamson, A time-space tradeoff for Boolean matrix multiplication, in Pro-
ceedings of the 31st Annual IEEE Symposium on Foundations of Computer Sci-
ence, 1990, pp. 412–419; available online from http://www.arxiv.org/abs/quant-
ph/0303041.

[Amb04] A. Ambainis, Quantum walk algorithm for element distinctness, in Proceedings of the
45st Annual IEEE Symposium on Foundations of Computer Science, 2004, pp.
22–31; available online from http://www.arxiv.org/abs/quant-ph/0311001.

[BBC+01] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf, Quantum lower
bounds by polynomials, J. ACM, 48 (2001), pp. 778–797.

[BBHT98] M. Boyer, G. Brassard, P. Høyer, and A. Tapp, Tight bounds on quantum search-
ing, Fortschr. Phys., 46 (1998), pp. 493–505.

[BCW98] H. Buhrman, R. Cleve, and A. Wigderson, Quantum versus classical com-
munication and computation, in Proceedings of the 30th Annual ACM Sym-
posium on Theory of Computing, 1998, pp. 63–68; available online from
http://www.arxiv.org/abs/quant-ph/9802040.

[BCWZ99] H. Buhrman, R. Cleve, R. de Wolf, and Ch. Zalka, Bounds for small-error and
zero-error quantum algorithms, in Proceedings of the 40th Annual IEEE Sym-
posium on Foundations of Computer Science, 1999, pp. 358–368; available online
from http://www.arxiv.org/abs/cs.CC/9904019.

[BDH+01] H. Buhrman, Ch. Dürr, M. Heiligman, P. Høyer, F. Magniez, M. Santha, and
R. de Wolf, Quantum algorithms for element distinctness, in Proceedings of the
16th Annual IEEE Conference on Computational Complexity, 2001, pp. 131–137;
available online from http://www.arxiv.org/abs/quant-ph/0007016.

[Bea91] P. Beame, A general sequential time-space tradeoff for finding unique elements, SIAM
J. Comput., 20 (1991), pp. 270–277.

[BFS86] L. Babai, P. Frankl, and J. Simon, Complexity classes in communication complexity
theory, in Proceedings of the 27th Annual IEEE Symposium on Foundations of
Computer Science, 1986, pp. 337–347.

[BHMT02] G. Brassard, P. Høyer, M. Mosca, and A. Tapp, Quantum amplitude amplifi-
cation and estimation, in Quantum Computation and Quantum Information: A
Millennium Volume, Contemp. Math. 305, AMS, Providence, RI, 2002, pp. 53–74;
available online from http://www.arxiv.org/abs/quant-ph/0005055.

[BJKS02a] Z. Bar-Yossef, T. S. Jayram, R. Kumar, and D. Sivakumar, An information statis-
tics approach to data stream and communication complexity, in Proceedings of the
43rd Annual IEEE Symposium on Foundations of Computer Science, 2002, pp.
209–218.

[BJKS02b] Z. Bar-Yossef, T. S. Jayram, R. Kumar, and D. Sivakumar, Information theory
methods in communication complexity, in Proceedings of the 17th Annual IEEE
Conference on Computational Complexity, 2002, pp. 93–102.

[BNRW05] H. Buhrman, I. Newman, H. Röhrig, and R. de Wolf, Robust polynomials and
quantum algorithms, in Proceedings of the 22nd Annual Symposium on The-
oretical Aspects of Computer Science (STACS 2005), Lecture Notes in Com-
put. Sci. 3404, Springer, Berlin, 2005, pp. 593–604; available online from
http://www.arxiv.org/abs/quant-ph/0309220.

[BPSW05] P. Beame, T. Pitassi, N. Segerlind, and A. Wigderson, A strong direct product
lemma for corruption and the multiparty NOF communication complexity of dis-
jointness, in Proceedings of the 20th Annual IEEE Conference on Computational
Complexity, 2005, pp. 52–66.

[BŠ06] H. Buhrman and R. Špalek, Quantum verification of matrix products, in Proceed-
ings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms,
Miami, 2006; available online from http://www.arxiv.org/abs/quant-ph/0409035.

[BTY94] P. Beame, M. Tompa, and P. Yan, Communication-space tradeoffs for unrestricted
protocols, SIAM J. Comput., 23 (1994), pp. 652–661.

[Buh00] H. Buhrman, Quantum computing and communication complexity, Bull. Eur. Assoc.
Theor. Comput. Sci., 70 (2000), pp. 131–141.

[BW02] H. Buhrman and R. de Wolf, Complexity measures and decision tree complexity: A
survey, Theoret. Comput. Sci., 288 (2002), pp. 21–43.

[CDNT98] R. Cleve, W. van Dam, M. Nielsen, and A. Tapp, Quantum entanglement and the
communication complexity of the inner product function, in Quantum Computing
and Quantum Communications, Lecture Notes in Comput. Sci. 1509, Springer,
Berlin, 1998, pp. 61–74; available online from http://www.arxiv.org/abs/quant-
ph/9708019.

1492 HARTMUT KLAUCK, ROBERT ŠPALEK, AND RONALD DE WOLF

[CR92] D. Coppersmith and T. J. Rivlin, The growth of polynomials bounded at equally
spaced points, SIAM J. Math. Anal., 23 (1992), pp. 970–983.

[CSWY01] A. Chakrabarti, Y. Shi, A. Wirth, and A. Yao, Informational complexity and the
direct sum problem for simultaneous message complexity, in Proceedings of the
42nd Annual IEEE Symposium on Foundations of Computer Science, 2001, pp.
270–278.

[GNW95] O. Goldreich, N. Nisan, and A. Wigderson, On Yao’s XOR Lemma, Techni-
cal report TR–95–050, ECCC, 1995; available online at http://www.eccc.uni-
trier.de/eccc/.

[Gro96] L. K. Grover, A fast quantum mechanical algorithm for database search, in Proceed-
ings of the 28th Annual ACM Symposium on Theory of Computing, 1996, pp.
212–219; available online from http://www.arxiv.org/abs/quant-ph/9605043.

[HW02] P. Høyer and R. de Wolf, Improved quantum communication complexity bounds
for disjointness and equality, in Proceedings of the 19th Annual Symposium
on Theoretical Aspects of Computer Science (STACS 2002), Lecture Notes in
Comput. Sci. 2285, Springer, Berlin, 2002, pp. 299–310; available online from
http://www.arxiv.org/abs/quant-ph/0109068.

[Kla00] H. Klauck, Quantum communication complexity, in Proceedings of Workshop on
Boolean Functions and Applications at the 27th Annual International Colloquium
on Automata, Languages and Programming, 2000, pp. 241–252; available online
from http://www.arxiv.org/abs/quant-ph/0005032.

[Kla03] H. Klauck, Quantum time-space tradeoffs for sorting, in Proceedings of the 35th
Annual ACM Symposium on Theory of Computing, 2003, pp. 69–76; available
online from http://www.arxiv.org/abs/quant-ph/0211174.

[Kla04] H. Klauck, Quantum and classical communication-space tradeoffs from rectangle
bounds, in FSTTCS 2004: Foundations of Software Technology and Theoretical
Computer Science, 24th International Conference, Lecture Notes in Comput. Sci.
3328, Springer, Berlin, 2004, pp. 384–395.

[KN97] E. Kushilevitz and N. Nisan, Communication Complexity, Cambridge University
Press, Cambridge, UK, 1997.

[Knu03] D. E. Knuth, Combinatorial matrices, in Selected Papers on Discrete Mathematics,
CSLI Lecture Notes 106, Stanford University, Stanford, CA, 2003, pp. 177–188.

[Kre95] I. Kremer, Quantum Communication, Master’s thesis, Computer Science Department,
The Hebrew University of Jerusalem, Jerusalem, 1995.

[KS92] B. Kalyanasundaram and G. Schnitger, The probabilistic communication complex-
ity of set intersection, SIAM J. Discrete Math., 5 (1992), pp. 545–557.

[LTT92] T. W. Lam, P. Tiwari, and M. Tompa, Trade-offs between communication and space,
J. Comput. System Sci., 45 (1992), pp. 296–315.

[NC00] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information,
Cambridge University Press, Cambridge, UK, 2000.

[Nis91] N. Nisan, CREW PRAMs and decision trees, SIAM J. Comput., 20 (1991), pp. 999–
1007.

[NRS94] N. Nisan, S. Rudich, and M. Saks, Products and help bits in decision trees, in Pro-
ceedings of the 35th Annual IEEE Symposium on Foundations of Computer Sci-
ence, 1994, pp. 318–329.

[NS94] N. Nisan and M. Szegedy, On the degree of Boolean functions as real polynomials,
Comput. Complexity, 4 (1994), pp. 301–313.

[Pat92] R. Paturi, On the degree of polynomials that approximate symmetric Boolean func-
tions, in Proceedings of the 24th Annual ACM Symposium on Theory of Comput-
ing, 1992, pp. 468–474.

[PRW97] I. Parnafes, R. Raz, and A. Wigderson, Direct product results and the GCD prob-
lem, in old and new communication models, in Proceedings of 29th ACM Sympo-
sium on Theory of Computing, 1997, pp. 363–372.

[Raz92] A. Razborov, On the distributional complexity of disjointness, Theoret. Comput. Sci.,
106 (1992), pp. 385–390.

[Raz03] A. Razborov, Quantum communication complexity of symmetric predicates, Izv.
Ross. Akad. Nauk. Ser. Mat., 67 (2003), pp. 159–176; available online from
http://www.arxiv.org/abs/quant-ph/0204025. %pagebreak

[Riv90] T. J. Rivlin, Chebyshev Polynomials: From Approximation Theory to Algebra and
Number Theory, 2nd ed., Wiley-Interscience, New York, 1990.

[Sha01] R. Shaltiel, Towards proving strong direct product theorems, in Proceedings of the
16th Annual IEEE Conference on Computational Complexity, 2001, pp. 107–119.

DIRECT PRODUCT THEOREMS AND TIME-SPACE TRADEOFFS 1493

[Wol02] R. de Wolf, Quantum communication and complexity, Theoret. Comput. Sci., 287
(2002), pp. 337–353.

[Yao77] A. C-C. Yao, Probabilistic computations: Toward a unified measure of complexity, in
Proceedings of the 18th Annual IEEE Symposium on Foundations of Computer
Science, 1977, pp. 222–227.

[Yao82] A. C-C. Yao, Theory and applications of trapdoor functions, in Proceedings of the
23rd Annual IEEE Symposium on Foundations of Computer Science, 1982, pp.
80–91.

[Yao93] A. C-C. Yao, Quantum circuit complexity, in Proceedings of the 34th Annual IEEE
Symposium on Foundations of Computer Science, 1993, pp. 352–360.

